4.7 Article

Molecular size as the main determinant of solute maximum flux across the skin

期刊

JOURNAL OF INVESTIGATIVE DERMATOLOGY
卷 122, 期 4, 页码 993-999

出版社

ELSEVIER SCIENCE INC
DOI: 10.1111/j.0022-202X.2004.22413.x

关键词

maximum flux; prediction; structure-activity relation ship; transdermal penetration

向作者/读者索取更多资源

One of the most important determinants of dermatological and systemic penetration after topical application is the delivery or flux of solutes into or through the skin. The maximum dose of solute able to be delivered over a given period of time and area of application is defined by its maximum flux (J(max), mol per cm(2) per h) from a given vehicle. In this work, J(max) values from aqueous solution across human skin were acquired or estimated from experimental data and correlated with solute physicochemical properties. Whereas epidermal permeability coefficients (k(p)) are optimally correlated to solute octanol-water partition coefficient (K-ow) and molecular weight (MW) was found to be the dominant determinant of J(max) for this literature data set: log J(max)=-3.90-0.0190MW (n=87, r(2)=0.847, p<0.001). Estimated solubility in octanol (S-oc) was also a determinant, but improvement in the regression by the addition of log S-oc was small (r(2) increased to 0.856). Addition of other physicochemical parameters to MW by forward stepwise regression only marginally improved the regression with a melting point (Mpt) term (r(2)=0.879) and then hydrogen bonding acceptor capability (H-a) (r(2)=0.917) is significant. Validation of the equation above was carried with a number of other data sets: an aqueous vehicle with full- and split-thickness skin (r(2)=0.784, n=56), some pure solutes (r(2)=0.537, n=34), an aqueous vehicle with ionizable solutes (r(2)=0.282, n=54) and solutes from a propylene glycol vehicle (r(2)=0.484, n=36). An analysis of the entire database gave the equation log J(max)=-4.52-0.0141MW (n=278, r(2)=0.688, p<0.001), with inclusion of Mpt and H-a increasing r(2) to 0.760 (n=269). Separate analysis of full- and split-thickness skin data confirmed that the dermal resistance term had only a marginal effect on overall J(max). Application of the latter model to an in vivo situation where the dermal capillary bed is slightly below the epidermal-dermal junction revealed that the dermal resistance term was unnecessary for in vivo predictions for most solutes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据