4.5 Article

A multiscale model for magneto-elastic behaviour including hysteresis effects

期刊

ARCHIVE OF APPLIED MECHANICS
卷 84, 期 9-11, 页码 1307-1323

出版社

SPRINGER
DOI: 10.1007/s00419-014-0863-9

关键词

Magneto-mechanical couplings; Magnetostriction; Constitutive laws; Micro-mechanical modelling; Hysteresis loops

向作者/读者索取更多资源

Magnetic and mechanical behaviour are strongly coupled: an applied stress modifies the magnetic behaviour, and on the other hand, magnetic materials undergo a magnetisation-induced strain known as the magnetostriction strain. These coupling effects play a significant role on the overall performance of electromagnetic devices such as magnetostrictive transducers or high-performance electric machines. In order to provide engineers with accurate design tools, magneto-elastic effects must be included into constitutive laws for magnetic materials. The origin of the magneto-elastic coupling lies in the competitive contributions of stress and magnetic field to the definition of magnetic domain configurations in magnetic materials. The magnetic domain scale is then suitable to describe magneto-elastic interactions, and this is the reason why multiscale approaches based on a micro-mechanical description of magnetic domain structures have been developed in the last decades. We propose in this paper an extension of a previous anhysteretic multiscale model in order to consider hysteresis effects. This new irreversible model is fully multiaxial and allows the description of typical hysteresis and butterfly loops and the calculation of magnetic losses as a function of external magneto-mechanical loadings. It is notably shown that the use of a configuration demagnetising effect related to the initial domain configuration enables to capture the non-monotony of the effect of stress on the magnetic susceptibility. This configuration demagnetising effect is also relevant to describe the effects of stress on hysteresis losses and coercive field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据