4.8 Article

Heterosis of Biomass production in Arabidopsis.: Establishment during early development

期刊

PLANT PHYSIOLOGY
卷 134, 期 4, 页码 1813-1823

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.103.033001

关键词

-

向作者/读者索取更多资源

Heterosis has been widely used in agriculture to increase yield and to broaden adaptability of hybrid varieties and is applied to an increasing number of crop species. We performed a systematic survey of the extent and degree of heterosis for dry biomass in 63 Arabidopsis accessions crossed to three reference lines (Col-0, C24, and Nd). We detected a high heritability (69%) for biomass production in Arabidopsis. Among the 169 crosses analyzed, 29 exhibited significant mid-parent-heterosis for shoot biomass. Furthermore, we analyzed two divergent accessions, C24 and Col-0, the F-1 hybrids of which were shown to exhibit hybrid vigor, in more detail. In the combination Col-0/C24, heterosis for biomass was enhanced at higher light intensities; we found 51% to 66% mid-parent-heterosis at low and intermediate light intensities (60 and 120 mumol m(-2) s(-1)), and 161% at high light intensity (240 mumol m(-2) s(-1)). While at the low and intermediate light intensities relative growth rates of the hybrids were higher only in the early developmental phase (0-15 d after sowing [DAS]), at high light intensity the hybrids showed increased relative growth rates over the entire vegetative phase (until 25 DAS). An important finding was the early onset of heterosis for biomass; in the cross Col-0/C24, differences between parental and hybrid lines in leaf size and dry shoot mass could be detected as early as 10 DAS. The widespread occurrence of heterosis in the model plant Arabidopsis opens the possibility to investigate the genetic basis of this phenomenon using the tools of genetical genomics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据