4.2 Review

Endoplasmic reticulum dysfunction in brain pathology: Critical role of protein synthesis

期刊

CURRENT NEUROVASCULAR RESEARCH
卷 1, 期 2, 页码 173-181

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1567202043480125

关键词

endoplasmic reticulum associated degradation; glucose regulated protein; nitric oxide; unfolded protein response

向作者/读者索取更多资源

The endoplasmic reticulum (ER) is a subcellular compartment playing a central role in folding and processing membrane and secretory proteins. The importance of these reactions for normal cellular function is indicated by the Fact that blocking of these processes is potentially lethal for cells. Under conditions associated with ER dysfunction, unfolded proteins accumulate in the ER lumen. This is the warning signal of two stress responses: the unfolded protein response (UPR) required for inducing the new synthesis of chaperons to refold the unfolded proteins, and the ER-associated degradation (ERAD) to degrade unfolded proteins at the proteasome. Cells in which UPR and ERAD cannot be activated to such an extent that ER function is restored die by apoptosis. In acute pathological states of the brain, including stroke, neurotrauma and epileptic seizures, and in degenerative diseases ER function is impaired in multiple ways. These include oxidative stress, nitric oxide-induced inactivation of the ER calcium pump resulting in disturbances of ER calcium homeostasis and impairment of UPR and ERAD. Furthermore, proteasomal function is impaired which causes secondary ER dysfunction. The only way to escape this potentially lethal cycle is to induce UPR and thus to activate new synthesis of ER chaperon GRP78 to levels sufficient to retold unfolded proteins. ER dysfunction may induce a state of tolerance, impair cellular functions, or induce apoptosis, depending oil the severity and duration and the cell type affected. This review focuses on the possible role of ER dysfunction in the pathological process induced by transient cerebral ischemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据