4.7 Review

ROS stress in cancer cells and therapeutic implications

期刊

DRUG RESISTANCE UPDATES
卷 7, 期 2, 页码 97-110

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.drup.2004.01.004

关键词

anticancer agents; apoptosis; cancer; mitochondria; reactive oxygen species (ROS)

资金

  1. NCI NIH HHS [CA77339, CA55164, CA100428, CA81534, CA85563] Funding Source: Medline

向作者/读者索取更多资源

Reactive oxygen species (ROS) are constantly generated and eliminated in the biological system, and play important roles in a variety of normal biochemical functions and abnormal pathological processes. Growing evidence suggests that cancer cells exhibit increased intrinsic ROS stress, due in part to oncogenic stimulation, increased metabolic activity, and mitochondrial malfunction. Since the mitochondrial respiratory chain (electron transport complexes) is a major source of ROS generation in the cells, the vulnerability of the mitochondrial DNA to ROS-mediated damage appears to be a mechanism to amplify ROS stress in cancer cells. The escalated ROS generation in cancer cells serves as an endogenous source of DNA-damaging agents that promote genetic instability and development of drug resistance. Malfunction of mitochondria also alters cellular apoptotic response to anticancer agents. Despite the negative impacts of increased ROS in cancer cells, it is possible to exploit this biochemical feature and develop novel therapeutic strategies to preferentially kill cancer cells through ROS-mediated mechanisms. This article reviews ROS stress in cancer cells, its underlying mechanisms and relationship with mitochondrial malfunction and alteration in drug sensitivity, and suggests new therapeutic strategies that take advantage of increased ROS in cancer cells to enhance therapeutic activity and selectivity. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据