4.8 Article

Influence of loop size on the stability of intramolecular DNA quadruplexes

期刊

NUCLEIC ACIDS RESEARCH
卷 32, 期 8, 页码 2598-2606

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkh598

关键词

-

向作者/读者索取更多资源

We have determined the stability of intramolecular DNA quadruplexes in which the four G(3)-tracts are connected by non-nucleosidic linkers containing propanediol, octanediol or hexaethylene glycol, replacing the TTA loops in the human telomeric repeat sequence. We find that these sequences all fold to form intramolecular complexes, which are stabilized by lithium < sodium < potassium. Quadruplex stability increases in the order propanediol < hexaethylene glycol < octanediol. The shallower shape of the melting profile with propanediol linkers and its lower dependency on potassium concentration suggests that this complex contains fewer stacks of G-quartets. The sequence with octanediol linkers displays a biphasic melting profile, suggesting that it can adopt more than one stable structure. All these complexes display melting temperatures above 310 K in the presence of 10 mM lithium, without added potassium, in contrast to the telomeric repeat sequence. These complexes also fold much faster than the telomeric repeat and there is little or no hysteresis between their melting and annealing profiles. In contrast, the human telomeric repeat sequence and a complex containing two hexaethylene glycol groups in each loop, are less stable and fold more slowly. The melting and annealing profiles for the latter sequence show significant differences, even when heated at 0.2degreesC min(-1). CD spectra for the oligonucleotides containing non-nucleosidic linkers show positive maxima at 264 nm, with negative minima similar to244 nm, which are characteristic of parallel quadruplex structures. These results show that the structure and stability of intramolecular quadruplexes is profoundly influenced by the length and composition of the loops.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据