4.5 Article

Effects of common buffer systems on drug activity: The case of clerocidin

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 17, 期 4, 页码 492-501

出版社

AMER CHEMICAL SOC
DOI: 10.1021/tx034210b

关键词

-

向作者/读者索取更多资源

Two widely used biological buffers [tris(hydroxymethyl)aminomethane (TRIS) and phosphate] covalently react with the topoisomerase II inhibitor clerocidin, affecting the drug's reactivity profile. Comprehensive analytical and structural analysis obtained by LC/MS, MS/MS, NMR, and IR techniques shows that these buffers form reversible and irreversible adducts through reactions with chemical groups, such as carbonyls, aldehydes, and epoxide. Analysis of the kinetic data on adducts formation suggests two parallel mechanisms for the inhibition of drug activity. The first involves modulation of the reactivity of the epoxide group obtained by elimination of the spiro system and relief of ring strain. This effect does not abolish epoxide reactivity and is more evident for the TRIS adduct, which can count on intramolecular stabilization of the form devoid of the spiro system. The second mechanism involves the slow nucleophilic attack to the epoxide ring, which results in permanent deactivation of the functional group responsible for topoisomerase II inhibition. This effect is predominant in phosphate buffer and is more evident for longer reaction times. These results provide a compelling reminder that the activity of chemically complex drugs in biological systems can be severely altered by buffer interactions, which may not be immediately predictable from the identity of the active group(s) and may require a more detailed knowledge of the subtle effects induced by vicinal groups.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据