4.8 Article

Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid

期刊

PLANT PHYSIOLOGY
卷 134, 期 4, 页码 1439-1449

出版社

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.103.037614

关键词

-

向作者/读者索取更多资源

Abscisic acid (ABA) is involved in a number of critical processes in normal growth and development as well as in adaptive responses to environmental stresses. For correct and accurate actions, a physiologically active ABA level is controlled through fine-tuning of de novo biosynthesis and catabolism. The hydroxylation at the 8'-position of ABA is known as the key step of ABA catabolism, and this reaction is catalyzed by ABA 8'-hydroxylase, a cytochrome P450. Here, we demonstrate CYP707As as the P450 responsible for the 8'-hydroxylation of (+)-ABA. First, all four CYP707A cDNAs were cloned from Arabidopsis and used for the production of the recombinant proteins in insect cells using a baculovirus system. The insect cells expressing CYP707A3 efficiently metabolized (+)-ABA to yield phaseic acid, the isomerized form of 8'-hydroxy-ABA. The microsomes from the insect cello exhibited very strong activity of 8'-hydroxylation of (+)-ABA (K-m = 1.3 muM and k(cat) = 15 min(-1)). The solubilized CYP707A3 protein bound (+)-ABA with the binding constant K-s = 3.5 muM, but did not bind (-)-ABA. Detailed analyses of the reaction products confirmed that CYP707A3 does not have the isomerization activity of 8'-hydroxy-ABA to phaseic acid. Further experiments revealed that Arabidopsis CYP707A1 and CYP707A4 also encode ABA 8'-hydroxylase. The transcripts of the CYP707A genes increased in response to salt, osmotic, and dehydration stresses as well as ABA. These results establish that the CYP707A family plays a key role in regulating the ABA level through the 8'-hydroxylation of (+)-ABA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据