3.8 Article Proceedings Paper

Analysis of bulk and interface phenomena in CdTe/CdS thin-film solar cells

期刊

INTERFACE SCIENCE
卷 12, 期 2-3, 页码 259-266

出版社

KLUWER ACADEMIC PUBL
DOI: 10.1023/B:INTS.0000028655.11608.c7

关键词

solar cells; CdTe; CdCl2; TEM

向作者/读者索取更多资源

CdTe layers have been grown on CdS layers to produce thin-film photovoltaic devices. Because of the large lattice mismatch of roughly 10%, CdTe and CdS can only be joined at the expense of a high density of misfit dislocations. Additionally, after deposition the CdTe layer contains submicrometer sized, [111] oriented, columnar grains with a high density of stacking faults and microtwins resulting in a poor electrical performance of the p-n junction. The performance of these cells can be improved by depositing a CdCl2 layer on the CdTe absorber layer and subsequent annealing of the stack in air. This treatment induces interdiffusion of S and Te across the interface, which results in a better lattice match. During this anneal, CdTe is subject to grain growth, recovery and recrystallization. In samples annealed for different durations after different amounts of CdCl2 were applied, grain growth is completed during the first minutes of annealing. Subsequent diffusion of Cl is detected along the CdTe grain boundaries. The presence of Cl enhances the recrystallization of the CdTe layer, starting from the CdTe surface, while recovery of the CdTe layer, mostly by the reduction of microtwins, takes place at the interface. The simultaneous occurrence of recrystallization and recovery leads to a preferred alignment of grain boundaries in CdTe parallel to the interface. Electron beam induced current measurements show the detrimental effect of these grain boundaries on the charge carrier collection efficiency of the cell. Based on these results, a modified growth procedure is proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据