4.7 Article

Genetic variability for root hair traits as related to phosphorus status in soybean

期刊

PLANT AND SOIL
卷 261, 期 1-2, 页码 77-84

出版社

SPRINGER
DOI: 10.1023/B:PLSO.0000035552.94249.6a

关键词

phosphorus; recombinant inbred lines; root hairs

向作者/读者索取更多资源

Plant root hairs are believed to be very important for phosphorus (P) uptake from the soil by expanding the absorptive surface area of the root and increasing the soil volume explored by the roots, but genetic information about root hair traits in soybean is relatively scarce. In the present study, two contrasting genotypes of soybean (Glycine max and Glycine soja), CN4 and XM6, and their 88 F-9-derived recombinant inbred lines (RILs) were grown in a field with moderately low P availability. Some important root hair traits, including root hair density (RHD), average root hair length (ARHL), and root hair length per unit root (RHLUR) were investigated and quantified with an automatic image analysis system and the genetic variability for these root hair traits was estimated with the RIL population. The results indicated that the two parental genotypes differed significantly in the three root hair traits measured, with XM6 generally having larger RHD and RHLUR (but smaller ARHL) than CN4, which may in part explain the difference in biomass and P status between the two parents. All the three root hair traits were continually segregated in the progenial RIL population with a normal distribution of the phenotypic values, indicating that these traits are possibly controlled by quantitative trait loci (QTLs). Analysis of variance for the RIL population showed that RHD had a low heritability (h(b)(2) = 27.32, 31.04, 33.97% for basal roots, tap roots, total roots, respectively), while ARHL had a relatively higher genetic variance and hence a higher heritability (h(b)(2) = 53.85, 59.18, 60.98% for basal roots, tap roots, total roots, respectively), suggesting that RHD is influenced more by environmental factors than ARHL. Both RHD and ARHL were positively correlated with RHLUR, indicating that the former two traits may be the attributes to the latter. On the other hand, RHD and ARHL were negatively correlated with each other, implying a possible complementary relationship between the two traits. Both RHD and RHLUR (but not ARHL) were positively correlated with P concentration in the plant, suggesting an important role of root hairs in P status. The basal roots had denser and higher total root hair length than the tap roots, and this is in accordance with previous observations with other plants that basal roots are more effective for P uptake than tap roots in cultivated soils.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据