4.4 Article

A neural network model of flexible spatial updating

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 91, 期 4, 页码 1608-1619

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00277.2003

关键词

-

资金

  1. NEI NIH HHS [EY-13360] Funding Source: Medline
  2. NIGMS NIH HHS [GM-07200] Funding Source: Medline

向作者/读者索取更多资源

Neurons in many cortical areas involved in visuospatial processing represent remembered spatial information in retinotopic coordinates. During a gaze shift, the retinotopic representation of a target location that is fixed in the world (world-fixed reference frame) must be updated, whereas the representation of a target fixed relative to the center of gaze (gaze-fixed) must remain constant. To investigate how such computations might be performed, we trained a 3-layer recurrent neural network to store and update a spatial location based on a gaze perturbation signal, and to do so flexibly based on a contextual cue. The network produced an accurate readout of target position when cued to either reference frame, but was less precise when updating was performed. This output mimics the pattern of behavior seen in animals performing a similar task. We tested whether updating would preferentially use gaze position or gaze velocity signals, and found that the network strongly preferred velocity for updating world-fixed targets. Furthermore, we found that gaze position gain fields were not present when velocity signals were available for updating. These results have implications for how updating is performed in the brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据