4.4 Article

Optimal γ-ray dose and irradiation conditions for producing low-molecular-weight chitosan that retains its chemical structure

期刊

RADIATION RESEARCH
卷 161, 期 4, 页码 471-480

出版社

RADIATION RESEARCH SOC
DOI: 10.1667/RR3125

关键词

-

向作者/读者索取更多资源

This study focuses on the optimal conditions for gamma irradiation to reduce the molecular weight of chitosan but still retain its chemical structure. Chitosan was irradiated under various conditions, i.e. Hake solid state (condition 1), flake dispersed in water (condition 2), flake dispersed in 0.05, 0.1, 1 and 2% aqueous K2S2O8 solution (conditions 3a, 3b, 3c and 3d, respectively), flake dispersed in 0.5, 1 and 2% aqueous H2O2 solution (conditions 4a, 4b and 4c, respectively), and chitosan acetic acid solution (condition 5). Comparative studies were done using three types of chitosans with molecular weights of the order of 10(5) Da with degrees of deacetylation of 0.80, 0.85 and 0.90%. For all conditions, after irradiation, there were two regions of molecular weight reduction. A severe degradation occurred in the first region with decreases in the molecular weight of 80% for radiation doses up to 50 kGy for conditions 1, 2 and 3 (3a-3c) and 20 kGy for condition 4. In the second region, a slow degradation occurred, which resembled a plateau stage. The results for conditions 3d and 5 were the most dramatic, since the primary structure of chitosan was changed after the irradiation. The degradation of chitosan by gamma rays was found to be most effective for the amorphous structure. The retention of the structure of chitosan after gamma irradiation makes it possible to produce a low-molecular-weight chitosan that retains its functionality, as demonstrated by its activity in the coupling reaction with N,N'-carbonyldiimidazole. (C) 2004 by Radiation Research Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据