4.7 Review

Fracture behaviors of piezoelectric materials

期刊

THEORETICAL AND APPLIED FRACTURE MECHANICS
卷 41, 期 1-3, 页码 339-379

出版社

ELSEVIER
DOI: 10.1016/j.tafmec.2003.11.019

关键词

piezoelectric materials; crack; theoretical analysis; experimental observation

向作者/读者索取更多资源

Theoretical analyses and experimental observations of the failure and fracture behaviors of piezoelectric materials are presented. The theoretical analyses are based on the Stroh formalism. A strip dielectric breakdown model is proposed to estimate the effect of electrical non-linearity on the piezoelectric fracture of electrically insulated cracks. The reviewed experiments include the indentation fracture test, the bending test on smooth samples, the fracture test on prenotched or pre-cracked samples, the environment-assisted fracture test, etc. For electrically insulated cracks, the experimental results show a complicated fracture behavior under combined electrical and mechanical loading. Fracture data are greatly scattered when a static electric field is applied. For electrically conducting cracks, the experimental results demonstrate that static electric fields can fracture poled and depoled lead zirconate titanate (PZT) ceramics. A charge-free zone model is introduced to understand the failure behavior of conducting cracks in the depoled lead zirconate titanate ceramics under electrical and/or mechanical loading. These theoretical and experimental results indicate that fracture mechanics concepts are useful in the study of the failure behaviors of piezoelectric materials. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据