4.7 Article

Lattice energies of apatites and the estimation of ΔHf○(PO43-, g)

期刊

INORGANIC CHEMISTRY
卷 43, 期 7, 页码 2340-2345

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic030255o

关键词

-

向作者/读者索取更多资源

Experimentally based lattice energies are calculated for the apatite family of double salts M-5(PO4)(3)X, where M is a divalent metal cation (Ca, Sr, Ba) and X is hydroxide or a halide. These values are also shown to be estimable, generally to within 4%, using the recently derived Glasser-Jenkins equation, U-POT = Al(2l/V-m)(1/3), where A = 121.39 kJ mol(-1). The apatites exhibiting greater covalent character (e.g., M = Pb, Cd, etc.) are less well reproduced but are within 8% of the experimentally based value. The lattice energy for ionic apatites having identical lattice ionic strengths, takes the particularly simple form U-POT/kJ mol(-1) = 26680/(V-m/nm(3))(1/3), reproducing cycle values Of U-POT well when V-m is estimated by ion volume summation and employing a volume for the PO43- ion (not previously quantified with an associated error) of 0.063 +/- 0.003 nm(3). A value for the enthalpy of formation of the gaseous phosphate ion, DeltaH(f)degrees(PO43-, g), is absent from current thermochemical tabulations. Examination of solution and solid state thermochemical cycles for apatites, however, leads us to a remarkably consistent value of 321.8 +/- 1.2 kJ mol(-1). Experimental and estimated lattice energies were used along with other thermodynamic data to determine enthalpies, entropies, and free energies of dissolution for apatites of uncertain stabilities. These dissolution values are compared with the corresponding values for stable apatites and are used to rationalize the relative instability of certain derivatives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据