4.4 Article

An appraisal of multiple NADPH binding-site models proposed for cytochrome P450 reductase, NO synthase, and related diflavin reductase systems

期刊

BIOCHEMISTRY
卷 43, 期 13, 页码 3929-3932

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi0360408

关键词

-

向作者/读者索取更多资源

The diflavin reductases exemplified by mammalian cytochrome P450 reductase catalyze NADPH dehydrogenation and electron transfer to an associated monooxygenase. It has recently been proposed that double occupancy of the NADPH dehydrogenation site inhibits the NADPH to FAD hydride transfer step in this series of enzymes. This has important implications for the mechanism of enzyme turnover. However, the conclusions are drawn from a series of pre-steady-state stopped-flow experiments in which the data analysis and interpretation are flawed. Recent data published for P450-BM3 reductase show a decrease in the rate constant for pre-steady-state flavin oxidation with increasing NADP(+) concentration. This is interpreted as evidence of inhibition by multiple substrate binding. A detailed reanalysis shows that the data are in fact consistent with a simple single-binding-site model in which reversible hydride transfer causes the observed effect. Data for the related systems are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据