4.6 Article

The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2003JD003823

关键词

land modeling; land data assimilation; surface energy budget

向作者/读者索取更多资源

[1] Results are presented from the multi-institution partnership to develop a real-time and retrospective North American Land Data Assimilation System (NLDAS). NLDAS consists of ( 1) four land models executing in parallel in uncoupled mode, ( 2) common hourly surface forcing, and ( 3) common streamflow routing: all using a 1/8degrees grid over the continental United States. The initiative is largely sponsored by the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project ( GCIP). As the overview for nine NLDAS papers, this paper describes and evaluates the 3-year NLDAS execution of 1 October 1996 to 30 September 1999, a period rich in observations for validation. The validation emphasizes ( 1) the land states, fluxes, and input forcing of four land models, ( 2) the application of new GCIP-sponsored products, and ( 3) a multiscale approach. The validation includes ( 1) mesoscale observing networks of land surface forcing, fluxes, and states, ( 2) regional snowpack measurements, ( 3) daily streamflow measurements, and ( 4) satellite-based retrievals of snow cover, land surface skin temperature (LST), and surface insolation. The results show substantial intermodel differences in surface evaporation and runoff ( especially over nonsparse vegetation), soil moisture storage, snowpack, and LST. Owing to surprisingly large intermodel differences in aerodynamic conductance, intermodel differences in midday summer LST were unlike those expected from the intermodel differences in Bowen ratio. Last, anticipating future assimilation of LST, an NLDAS effort unique to this overview paper assesses geostationary-satellite-derived LST, determines the latter to be of good quality, and applies the latter to validate modeled LST.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据