4.7 Article

Magnetohydrodynamic accretion flows: Formation of magnetic tower jet and subsequent quasi-steady state

期刊

ASTROPHYSICAL JOURNAL
卷 605, 期 1, 页码 307-320

出版社

IOP PUBLISHING LTD
DOI: 10.1086/381234

关键词

accretion, accretion disks; black hole physics; ISM : jets and outflows; MHD; relativity

向作者/读者索取更多资源

We present three-dimensional magnetohydrodynamic (MHD) simulations of radiatively inefficient accretion flow around black holes. General relativistic effects are simulated by using the pseudo-Newtonian potential. We start calculations with a rotating torus threaded by localized poloidal magnetic fields with plasma-beta, a ratio of the gas pressure to the magnetic pressure, beta = 10 and 100. When the bulk of torus material reaches the innermost region close to a central black hole, a magnetically driven jet emerges. This magnetic jet is derived by vertically inflating toroidal fields (magnetic tower'') and has a two-component structure: low-beta (less than or similar to1) plasmas threaded with poloidal (vertical) fields are surrounded by those with toroidal fields. The collimation width of the jet depends on external pressure, the pressure of ambient medium; the weaker the external pressure is, the wider and the longer lasting becomes the jet. Unless the external pressure is negligible, the bipolar jet phase ceases after several dynamical timescales at the original torus position and a subsequent quasi-steady state starts. The black hole is surrounded by a quasi-spherical zone with highly inhomogeneous structure in which toroidal fields are dominant except near the rotation axis. Mass accretion takes place mainly along the equatorial plane. Comparisons with other MHD simulation results and observational implications are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据