4.1 Article

Transient exposure to the Eg5 kinesin inhibitor monastrol leads to syntelic orientation of chromosomes and aneuploidy in mouse oocytes

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mrgentox.2004.01.001

关键词

aneuploidy; oocyte; monastrol; chromosome

向作者/读者索取更多资源

Aneuploidy may result from abnormalities in the biochemical pathways and cellular organelles associated with chromosome segregation. Monastrol is a reversible, cell-permeable, non-tubulin interacting inhibitor of the mitotic kinesin Eg5 motor protein which is required for assembling and maintaining the mitotic spindle. Monastrol can also impair centrosome separation and induce monoastral spindles in mammalian somatic cells. The ability of monastrol to alter kinesin Eg5 and centrosome activities and spindle geometry may lead to abnormal chromosome segregation. Mouse oocytes were exposed to 0 (control), 15, 30, and 45 mug/ml monastrol in vitro for 6 h during meiosis I and subsequently cultured for 17 h in monastrol-free media prior to cytogenetic analysis of metaphase II oocytes. A subset of oocytes was cultured for 5 h prior to processing cells for meiotic I spindle analysis. Monastrol retarded oocyte maturation by significantly (P < 0.05) decreasing germinal vesicle breakdown and increasing the frequencies of arrested metaphase I oocytes. Also, significant (P < 0.05) increases in the frequencies of monoastral spindles and chromosome displacement from the metaphase plate were found in oocytes during meiosis I. In metaphase II oocytes, monastrol significantly (P < 0.05) increased the frequencies of premature centromere separation and aneuploidy. These findings suggest that abnormal meiotic spindle geometry predisposes oocytes to aneuploidy. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据