4.6 Article

Induction, modification and accumulation of HSP70s in the rat liver after acute exercise:: early and late responses

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 556, 期 2, 页码 369-385

出版社

WILEY
DOI: 10.1113/jphysiol.2003.058420

关键词

-

向作者/读者索取更多资源

Liver cells synthesize HSP72, the cytosolic highly stress-inducible member of the 70 kDa family of heat-shock proteins (HSP70s), in response to acute exercise. This study was aimed at obtaining further insight into the physiological relevance of the hepatic stress response to exercise by investigating the induction and long-term maintenance of increased levels of HSP70s of the HSP and glucose-regulated protein (GRP) families, their post-translational modifications during or after exercise and the possible relation of HSP induction to oxidative stress. In a running rat model, acute exercise activated the synthesis and accumulation of HSP72, GRP75 and GRP78 in liver cells, pointing towards a multifactorial origin of this response. A peak HSP72 accumulation was observed shortly after exercise as a result of transcriptional activation. HSP72 was reduced shortly after exercise preceding the disappearance of its mRNA. Two further waves of HSP72 accumulation peaked 8 and 48 h after exercise without transcriptional activation. A transient increase in the proportion of acidic variants of HSP72 and HSP73 was also observed shortly after exercise as a result, at least in part, of protein phosphorylation. Free and protein-bound lipid peroxidation derivatives (TBARS) showed a tendency to increase in the early post-exercise and the free-to-protein-bound TBARS ratio decreased significantly after 2 h. During the early post-exercise period, protein-bound TBARS correlated positively with HSP72 and 73, but not with GRP75 or GRP78. Altogether, the reported results indicate that the early induction and post-translational modification of HSP70s in liver cells following exercise is a preliminary step of a series of long-lasting HSP70-related events, possibly designed to preserve liver cell homeostasis and to help provide a concerted response of the whole organism to physical stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据