4.8 Article

Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field

期刊

BIOSENSORS & BIOELECTRONICS
卷 19, 期 9, 页码 1097-1107

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2003.10.004

关键词

electric-stimulus responsive hydrogels; multiphasic mixture theory; mathematical model; diffusion; convection; BioMEMS; meshless method

向作者/读者索取更多资源

Based on a multi-phasic mixture theory with consideration of ionic diffusion and convection, a multi-physic model, called the multi-effect-coupling electric-stimulus (MECe) model, is developed for simulation of responsive behavior of the electric-sensitive hydrogels when they are immersed into a bathing solution subject to an externally applied electric field. In the developed model, with chemo-electro-mechanical coupling effects, the convection-diffusion equations for concentration distribution of diffusive ions incorporate the influence of electric potential. The electroneutrality condition is replaced by the Poisson equation for distribution of electric potential. The steady and transient analyses of hydrogel deformation are easily carried Out by the continuity and momentum equations of the mixture phase. Further, the computational domain of the present model covers both the hydrogel and the surrounding solution. In order to solve the present mathematical model consisting of multi-field coupled nonlinear partial differential governing equations, a hierarchical iteration technique is proposed and a meshless Hermite-Cloud method (HCM) is employed. The steady-state simulation of the electric-stimulus responsive hydrogel is numerically conducted when it is subjected to an externally applied electric field. The hydrogel deformation and the ionic concentrations as well as electric potentials of both the hydrogel and external solution are investigated. The parameter influences on the swelling behaviors of the hydrogel are also discussed in detail. The simulatim, results are in good agreement with the experimental data and they validate the presently developed model. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据