4.6 Article

Multiple scattering and nonlinear thermal emission of Yb3+, Er3+:Y2O3 nanopowders

期刊

JOURNAL OF APPLIED PHYSICS
卷 95, 期 8, 页码 4069-4077

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1667274

关键词

-

向作者/读者索取更多资源

Radiation transport and multiple scattering calculations are presented and compared with experimental observations to characterize light attenuation in high emissivity nanopowders irradiated with low power laser light at room temperature, and to explain the associated white light emission and the onset of melting. Using radiation tuned to an absorption resonance of Yb3+ dopants in Y2O3 nanopowder, we observed the onset of intense blackbody emission above a well-defined intensity threshold. Local melting of the compact above threshold leads to the formation of single crystal microtubes. Evidence is provided to show that two-flux transport theory and diffusion theory both significantly underestimate the absorption due to dependent, multiple scattering and that the threshold for the thermal runaway process responsible for this behavior is very sensitive to porosity of the random medium. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据