4.8 Article

Injectable controlled release formulations incorporating protein crystals

期刊

JOURNAL OF CONTROLLED RELEASE
卷 96, 期 1, 页码 149-158

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2004.01.019

关键词

protein crystals; crystal morphology; stability; controlled release; protein loading

向作者/读者索取更多资源

Development of ready-to-inject in situ formable controlled release gel systems for proteins is extremely challenging due to poor stability of proteins in the organic solvents typically used to fabricate these systems and because of the need of initial drying of proteins. The focus of the present study was to develop and characterize injectable controlled release systems composed of crystals of amylase, a model protein, suspended in solutions of polymeric and non-polymeric matrix materials in organic solvents. In this study, a-amylase derived from Aspergillus oryzae was crystallized and crystals were suspended in a poly(DL-lactide-co-glycolide) (PLGA) solution in acetonitrile (PLGA/acetonitrile), or in sucrose acetate isobutyrate (SAIB) plasticized with ethanol (SAIB/ethanol) systems. The results indicate that the protein crystals could be incorporated in these in situ formable gels without the need for initial drying. The crystals withstand organic solvents and water/organic solvent interfaces, and provide high protein loading (>30%) in these systems. Moreover, changing the morphology of the amylase crystals successfully modulated amylase release profiles. Study of long-term stability at 4 degreesC revealed a greater stability of crystalline protein compared to amorphous amylase. The abovementioned data suggest that protein crystals might offer greater feasibility in developing sustained release injectable in situ formable protein depot systems. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据