4.7 Article

Time dependent radial diffusion modeling of relativistic electrons with realistic loss rates

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 31, 期 8, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2004GL019591

关键词

-

向作者/读者索取更多资源

Model simulations are compared to the typically observed evolution of MeV electron fluxes during geomagnetic storms to investigate whether radial diffusion alone can account for the observed variability and to estimate the effect of electron lifetimes. We demonstrate that knowledge of lifetimes is crucial for understanding the radial structure of the storm-time radiation belts and their temporal evolution. Our model results suggest that outer zone lifetimes at 1 MeV are on the order of few days during quite-times and less than a day during storm-time conditions. Losses outside plasmasphere should be included in the modeling of electron fluxes since effective lifetimes are much shorter than that of plasmaspheric losses. Simulations with variable outer boundary conditions show that the depletion of the main phase relativistic electron fluxes at L less than or equal to 4 can not be explained only by variations in fluxes near geosynchronous orbit and require local lifetimes as short as 0.5 day. Radial diffusion alone is unable to account for either the gradual build up of relativistic electron fluxes or the maxima in phase space density near L = 4 - 5 observed during the recovery phase of many storms, which suggests that an additional local acceleration source is also required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据