4.7 Article

Signaling by insulin-like growth factor 1 in brain

期刊

EUROPEAN JOURNAL OF PHARMACOLOGY
卷 490, 期 1-3, 页码 25-31

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejphar.2004.02.042

关键词

insulin; metabolism; akt; GSK3 beta (glycogen synthase kinase 3 beta); tau; ketogenic diet

向作者/读者索取更多资源

The homologous insulin and insulin-like growth factor (IGF) receptors are both expressed in the brain, in overlapping but distinct neuroanatomical patterns. In contrast to insulin, IGF1 is also highly expressed within the brain and is essential for normal brain development. IGF1 promotes projection neuron growth, dendritic arborization and synaptogenesis. IGF1 acts in ail autocrine and/or paracrine manner to promote glucose utilization, using phosphatidylinositol 3 kinase (PI3K)/Akt, also known as protein kinase B (PKB)/glycogen synthase kinase 3beta (GSK3beta) pathways similar to insulin signaling in peripheral tissues. IGF1 promotes neuronal survival during normal brain development mainly in hippocampal and olfactory systems that depend on postnatal neurogenesis. IGF1's anabolic and neuroprotective roles may be coordinated by inhibition of GSK3beta. The identification of GSK3beta as a major target of brain IGF1 signaling provides a unifying pathway for IGF1's well-established anabolic and anti-apoptotic functions, with IGF1-induced inhibition of GSK3beta triggering multifaceted anabolic and neuroprotective effects. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据