4.8 Article

Programmed population control by cell-cell communication and regulated killing

期刊

NATURE
卷 428, 期 6985, 页码 868-871

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02491

关键词

-

向作者/读者索取更多资源

De novo engineering of gene circuits inside cells is extremely difficult(1-9), and efforts to realize predictable and robust performance must deal with noise in gene expression and variation in phenotypes between cells(10-12). Here we demonstrate that by coupling gene expression to cell survival and death using cell-cell communication, we can programme the dynamics of a population despite variability in the behaviour of individual cells. Specifically, we have built and characterized a 'population control' circuit that autonomously regulates the density of an Escherichia coli population. The cell density is broadcasted and detected by elements from a bacterial quorum-sensing system(13,14), which in turn regulate the death rate. As predicted by a simple mathematical model, the circuit can set a stable steady state in terms of cell density and gene expression that is easily tunable by varying the stability of the cell-cell communication signal. This circuit incorporates a mechanism for programmed death in response to changes in the environment, and allows us to probe the design principles of its more complex natural counterparts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据