4.6 Article

Mechanism of genetic complementation of ammonium transport in yeast by human erythrocyte Rh-associated glycoprotein

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 17, 页码 17443-17448

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M311853200

关键词

-

资金

  1. NIDDK NIH HHS [DK02751] Funding Source: Medline

向作者/读者索取更多资源

The Rh blood group proteins are erythrocyte proteins important in neonatal and transfusion medicine. Recent studies have shed new light on the possible biological function of Rh proteins as members of a conserved family of proteins involved in ammonium transport. The erythrocyte Rh-associated glycoprotein (RhAG) mediates uptake of ammonium when expressed in Xenopus laevis oocytes, and functional studies indicate that RhAG might function as an NH4+-H+-exchanger. To further delineate the functional properties of RhAG, in this study we have expressed RhAG in both a Saccharomyces cerevisiae ammonium-transport mutant (mep1Delta mep2Delta mep3Delta) and a wild-type strain. RhAG was able to complement the transport mutant, with complementation strictly pH-dependent, requiring pH 6.2-6.5. RhAG also conferred resistance to methylamine (MA), a toxic analog of ammonium, and expression in wild-type cells revealed that resistance was correlated with efflux of MA. RhAG-mediated resistance was pH-dependent, being optimal at acid pH. The opposite pH dependence of ammonium complementation (uptake) and MA resistance (efflux) is consistent with bidirectional movement of substrate counter to the direction of the proton gradient. This report clarifies and expands previous observations of RhAG-mediated transport in yeast and supports the hypothesis that ammonium transport is coupled to the H+ gradient and that RhAG functions as a NH4+/H+ exchanger.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据