4.6 Article

Seeding specificity in amyloid growth induced by heterologous fibrils

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 17, 页码 17490-17499

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M311300200

关键词

-

资金

  1. NIA NIH HHS [AG18416] Funding Source: Medline

向作者/读者索取更多资源

Over residues 15-36, which comprise the H-bonded core of the amyloid fibrils it forms, the Alzheimer's disease plaque peptide amyloid beta (Abeta) possesses a very similar sequence to that of another short, amyloidogenic peptide, islet amyloid polypeptide (IAPP). Using elongation rates to quantify seeding efficiency, we inquired into the relationship between primary sequence similarity and seeding efficiency between Abeta-(1-40) and amyloid fibrils produced from IAPP as well as other proteins. In both a solution phase and a microtiter plate elongation assay, IAPP fibrils are poor seeds for Abeta-(1 40) elongation, exhibiting weight-normalized efficiencies of only 1-2% compared with Abeta-(1-40) fibrils. Amyloid fibrils of peptides with sequences completely unrelated to Abeta also exhibit poor to negligible seeding ability for Abeta elongation. Fibrils from a number of point mutants of Abeta-(1-40) exhibit intermediate seeding abilities for wild-type Abeta elongation, with differing efficiencies depending on whether or not the mutation is in the amyloid core region. The results suggest that amyloid fibrils from different proteins exhibit structural differences that control seeding efficiencies. Preliminary results also suggest that identical sequences can grow into different conformations of amyloid fibrils as detected by seeding efficiencies. The results have a number of implications for amyloid structure and biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据