4.8 Article

Osmo-regulation of bacterial transcription via poised RNA polymerase

期刊

MOLECULAR CELL
卷 14, 期 2, 页码 153-162

出版社

CELL PRESS
DOI: 10.1016/S1097-2765(04)00202-3

关键词

-

资金

  1. NIGMS NIH HHS [GM35754] Funding Source: Medline

向作者/读者索取更多资源

Adaptation to high-salt environments is critical for the survival of a wide range of cells, especially for pathogenic bacteria that colonize the animal gut and urinary tract. The adaptation strategy involves production of the salt potassium glutamate, which induces a specific gene expression program that produces electro-neutral osmolytes while inhibiting general sigma(70) transcription. These data show that in Escherichia coli potassium glutamate stimulates transcription by disengaging inhibitory polymerase interactions at a sigma(38) promoter. These occur in an upstream region that is marked by an osmotic shock promoter DNA consensus sequence. The disruption activates a poised RNA polymerase to transcribe. This transcription program leads to the production of osmolytes that are shown to have only minor effects on transcription and therefore help to restore normal cell function. An osmotic shock gene expression cycle is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据