4.6 Article

Room-temperature direct current operation of 290 nm light-emitting diodes with milliwatt power levels

期刊

APPLIED PHYSICS LETTERS
卷 84, 期 17, 页码 3394-3396

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1728307

关键词

-

向作者/读者索取更多资源

Ultraviolet light-emitting diodes (LEDs) have been grown by metalorganic vapor phase epitaxy using AlN nucleation layers and thick n-type Al0.48Ga0.52N current spreading layers. The active region is composed of three Al0.36Ga0.64N quantum wells with Al0.48Ga0.52N barriers for emission at 290 nm. Devices were designed as bottom emitters and flip-chip bonded to thermally conductive submounts using an interdigitated contact geometry. The ratio of quantum well emission to 330 nm sub-band gap emission is as high as 125:1 for these LEDs. Output power as high as 1.34 mW at 300 mA under direct current operation has been demonstrated with a forward voltage of 9.4 V. A peak external quantum efficiency of 0.18% has been measured at an operating current of 55 mA. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据