4.8 Article

Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films:: Free energy vs distance dependence

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 126, 期 16, 页码 5225-5233

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja039924n

关键词

-

向作者/读者索取更多资源

In this paper we address the dependence of the charge recombination dynamics in dye-sensitized, nanocrystalline TiO2 films upon the properties of the sensitizer dye employed. In particular we focus upon dependence of the charge recombination kinetics upon the dye oxidation potential E-0(D+/D), determined electrochemically, and the spatial separation r of the dye cation HOMO orbital from the metal oxide surface, determined by semiempirical calculations. Our studies employed a series of ruthenium bipyridyl dyes in addition to porphyrin and phthalocyanine dyes. A strong correlation is observed between the recombination dynamics and the spatial separation r, with variation in r by 3 A resulting in a more than 10-fold change in the recombination half-time t(50%). This correlation is found to be in agreement with electron tunneling theory, t(50%) proportional to exp(-betar) with beta = 0.95 +/- 0.2 Angstrom(-1). In contrast, the recombination dynamics were found to be relatively insensitive to variations in E-0(D+/D), indicative of the recombination reaction lying near the peak of the Marcus free energy curve, DeltaG similar to lambda, and with lambda similar to 0.8 eV. A correlation is also observed between the recombination half-time and the temporal shape of the kinetics, with faster recombination dynamics being more dispersive (less monoexponential). Comparison with numerical Monte Carlo type simulations suggests this correlation is attributed to a shift from fast recombination dynamics primarily limited by dispersive electron transport within the metal oxide film to slower dynamics primarily limited by the interfacial electron-transfer reaction. We conclude that the primary factor controlling the charge recombination dynamics in dye-sensitized, nanocrystalline TiO2 films is the spatial separation of the dye cation from the electrode surface. In particular, we show that for the Ru(dcbPY)(2)NCS2 dye series, the use of X = NCS rather than X = CN results in a 2 A shift in the dye cation HOMO orbital away from the electrode surface, causing a 7-fold retardation of the recombination dynamics, resulting in the remarkably slow recombination dynamics observed for this sensitizer dye.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据