4.6 Article

Inhibitory effect of soluble PDGF-β receptor in culture-activated hepatic stellate cells

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2004.03.064

关键词

adenovirus; gene transfer; alpha-SMA; collagen type I (alpha I); fibrosis; hepatic stellate cell; myofibroblast; PDGF; PDGFR; sPDGFR beta; soluble receptor; TGF-beta 1

向作者/读者索取更多资源

Following liver injury, hepatic stellate cells undergo phenotypic transformation with acquisition of myofibroblast-like features, characterized by increased cell proliferation, motility, contractility, and extracellular matrix production. Activation of hepatic stellate cells is regulated by several cytokines and growth factors, including platelet-derived growth factor B-chain, a potent mitogen for HSC, overexpressed during hepatic fibrogenesis. This pleiotropic mediator exerts cellular effects by binding to specific receptors, inducing receptor dimerization and tyrosine-autophosphorylation. Activated receptor phosphotyrosines recruit signal transduction molecules, initiating various signaling pathways. We produced a soluble PDGFbeta-receptor (sPDGFRbeta) consisting of an extracellular domain connected to the IgG-Fc part of human immunoglobulin heavy chain. This soluble, chimeric receptor inhibits PDGF signaling and PDGF-induced proliferation in culture-activated hepatic stellate cells. Furthermore, sPDGFR decreased collagen type I (alphaI) mRNA expression and inhibits autocrine-looping in PDGF-BB mRNA production. In summary, sPDGFRbeta clearly shows effective inhibitory properties in early HSC activation, suggesting potential therapeutic impact for anti-PDGF intervention in liver fibrogenesis. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据