4.7 Article

Role of calcium cycling versus restitution in the mechanism of repolarization alternans

期刊

CIRCULATION RESEARCH
卷 94, 期 8, 页码 1083-1090

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000125629.72053.95

关键词

electrophysiology; T-wave alternans; repolarization; Ca2+ cycling; optical mapping

资金

  1. NHLBI NIH HHS [R01HL54807, R01HL68877] Funding Source: Medline

向作者/读者索取更多资源

T-wave alternans, a powerful marker of arrhythmic events, results from alternation in action potential duration (APD). The underlying cellular mechanism of APD alternans is unknown but has been attributed to either intracellular calcium (Ca2+) cycling or membrane ionic currents, manifested by a steep slope of cellular APD restitution. To address these mechanisms, high-resolution optical mapping techniques were used to measure action potentials and Ca2+ transients simultaneously from hundreds of epicardial sites in the guinea pig model of pacing-induced T-wave alternans (n=7). The pacing rates (ie, alternans threshold) at which T-wave (369+/-11 bpm), APD (369+/-21 bpm), and Ca2+ (371+/-29 bpm) alternans first appeared were comparable. Importantly, the site of origin of APD alternans and Ca2+ alternans consistently occurred together near the base of the left ventricle, not where APD restitution was steepest. In addition, APD and Ca2+ alternans were remarkably similar both spatially and temporally during discordant alternans. In conclusion, the mechanism underlying T-wave alternans in the intact heart is more closely associated with intracellular Ca2+ cycling rather than APD restitution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据