4.3 Article

Quantitative trait linkage analysis by generalized estimating equations: Unification of variance components and Haseman-Elston regression

期刊

GENETIC EPIDEMIOLOGY
卷 26, 期 4, 页码 265-272

出版社

WILEY
DOI: 10.1002/gepi.10315

关键词

-

资金

  1. NIGMS NIH HHS [GM49909] Funding Source: Medline

向作者/读者索取更多资源

Two of the major approaches for linkage analysis with quantitative traits in humans include variance components and Haseman-Elston regression. Previously, these were viewed as quite separate methods. We describe a general model, fit by use of generalized estimating equations (GEE), for which the variance components and Haseman-Elston methods (including many of the extensions to the original Haseman-Elston method) are special cases, corresponding to different choices for a working covariance matrix. We also show that the regression-based test of Sham et al. ([2002] Am. J. Hum. Genet. 71:238-253) is equivalent to a robust score statistic derived from our GEE approach. These results have several important implications. First, this work provides new insight regarding the connection between these methods. Second, asymptotic approximations for power and sample size allow clear comparisons regarding the relative efficiency of the different methods. Third, our general framework suggests important extensions to the Haseman-Elston approach which make more complete use of the data in extended pedigrees and allow a natural incorporation of environmental and other covariates. (C) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据