4.2 Article

Integrated geostatistics and GIS techniques for assessing groundwater contamination in Al Arish area, Sinai, Egypt

期刊

ARABIAN JOURNAL OF GEOSCIENCES
卷 5, 期 2, 页码 197-215

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s12517-010-0153-y

关键词

Groundwater contamination; Nitrate; Trace metal; Geostatistics; GIS; Sinai; Egypt

向作者/读者索取更多资源

Sustainable development in El Arish area of North Sinai, Egypt, is retarded by serious environmental problems, where the land-use and land cover of the region is changing over present time. The impact of human activities in the study area is accompanied by the destruction and over-exploitation of the environment. This study applies multivariate statistics (factor and cluster analyses) and GIS techniques to identify both anthropogenic and natural processes affecting the groundwater quality in the Quaternary sands aquifer. The aim of this study was to investigate the impacts on groundwater resources, the potential pollution sources, and to identify the main anthropogenic inputs of both nutrients and trace metal. Since the depth to the water table is shallow especially in the northern part (< 4 m), and the aquifer was exposed on the ground surface, it has poor buffering capacity and the pollution risk is very high. Groundwater chemistry in this coastal region has complex contaminant sources, where intensive farming activities and untreated wastes put stress on groundwater quality. Several areal distribution maps were constructed for correlating water quality with possible contributing factors such as location, land-use, and aquifer depth. These maps identified both anthropogenic and natural processes affecting groundwater quality of the studied aquifer. Cluster analysis was used to classify water chemistry and determine the hydrochemical groups, Q-mode dendrogram is interpreted and there are three main clusters. Factor analyses identify the potential contamination sources affecting groundwater hydrochemistry such as: nitrate, sulfate, phosphate and potassium fertilizers, pesticides, sewage pond wastes, and salinization due to circulation of dissolved salts in the irrigation water itself.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据