4.2 Article

Numerical solution of fractional advection-dispersion equation

期刊

JOURNAL OF HYDRAULIC ENGINEERING
卷 130, 期 5, 页码 422-431

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9429(2004)130:5(422)

关键词

rivers; advection; wave dispersion; numerical models; stability analysis

向作者/读者索取更多资源

Numerical schemes and stability criteria are developed for solution of the one-dimensional fractional advection-dispersion equation (FRADE) derived by revising Fick's first law. Employing 74 sets of dye test data measured on natural streams, it is found that the fractional order F of the partial differential operator acting on the dispersion term varies around the most frequently occurring value of F = 1.65 in the range of 1.4 to 2.0. Two series expansions are proposed for approximation of the limit definitions of fractional derivatives. On this ground, two three-term finite-difference schemes-1.3 Backward Scheme having the first-order accuracy and F.3 Central Scheme possessing the F-th order accuracy-are presented for fractional order derivatives. The F.3 scheme is found to perform better than does the 1.3 scheme in terms of error and stability analyses and is thus recommended for numerical solution of FRADE. The fractional dispersion model characterized by the FRADE and the F.3 scheme can accurately simulate the long-tailed dispersion processes in natural rivers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据