4.7 Article

Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C

期刊

DIABETES
卷 53, 期 5, 页码 1352-1359

出版社

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.53.5.1352

关键词

-

资金

  1. NHLBI NIH HHS [HL 30260, HL 66074, HL 46558, HL 65380, HL 50587] Funding Source: Medline

向作者/读者索取更多资源

Insulin resistance (IR) impairs vascular function in the peripheral and coronary circulations, but its effects on cerebral arteries are virtually unexplored. We examined the vascular responses of the basilar artery (BA) and its side branches through a cranial window in Zucker lean (ZL) and IR Zucker obese (ZO) rats. Nitric oxide (NO) and K+ channel-mediated dilator responses, elicited by acetylcholine, iloprost, cromakalim, and elevated [K+], were greatly diminished in the ZO rats compared with ZL rats. In contrast, sodium nitroprusside induced similar relaxations in the two experimental groups. Expressions of the K+ channel pore-forming subunits were not affected by IR, while endothelial NO synthase was upregulated in the ZO arteries compared with ZL arteries. Protein kinase C (PKC) activity and production of superoxide anion were increased in the cerebral arteries of ZO rats, and pretreatment with superoxide dismutase restored all examined dilator responses. In contrast, application of PKC inhibitors improved only receptor-linked NO-mediated relaxation, but not K+ channel-dependent responses. Thus, IR induces in ZO rats cerebrovascular dysfunction, which is mediated by oxidative stress and partly by PKC activation. The revealed impairment of NO and K+ channel-dependent dilator responses may be responsible for the increased risk of cerebrovascular events and neurodegenerative disorders in IR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据