4.7 Article

Reoxygenation after severe hypoxia induces cardiomyocyte hypertrophy in vitro:: activation of CREB downstream of GSK3β

期刊

FASEB JOURNAL
卷 18, 期 7, 页码 1096-+

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.03-1054fje

关键词

cardiac hypertrophy; heart failure; CRE-dependent transcription

向作者/读者索取更多资源

In vivo, left ventricular remodeling after myocardial infarction involves hypertrophy generally attributed to increased cardiac workload. We hypothesized that hypoxia/reoxygenation directly induces cardiomyocyte hypertrophy and studied several participating kinases and transcription factors in isolated cardiomyocytes. Hypoxia for 6 h followed by 42 h reoxygenation induced cardiomyocyte hypertrophy assessed by H-3 leucine incorporation and immunohistochemistry. Inhibition of reactive oxygen species (ROS), serine/threonine kinase AKT, and ERK abolished reoxygenation-induced hypertrophy. In addition, a beta2-adrenergic receptor (beta2-AR) antagonist, as well as Gi inhibitor pertussis toxin, blocked reoxygenation- induced hypertrophy. Hypoxia for 6 h increased transcription factors CREB, NF-kappaB, and GATA DNA binding activities. However, only CREB DNA-binding was sustained during reoxygenation. Inhibition of PI3-kinase, ERK, and PKA abrogated reoxygenation- induced CREB DNA-binding without affecting CREB serine-133 phosphorylation. These same pathways were found to regulate hypoxia/reoxygenation-induced GSK3beta kinase activity and CREB serine-129 de-phosphorylation. GSK3beta mutants resistant to phosphorylation blocked the stimulation of CRE-dependent transcription induced by hypoxia/reoxygenation. Transfection of cardiomyocytes with a dominant-negative mutant of CREB abrogated hypoxia/reoxygenation-induced hypertrophy. We suggest that hypoxia/reoxygenation induces cardiomyocyte hypertrophy through CREB activation. Inactivation of GSK3beta by hypoxia/reoxygenation, possibly integrating PI3-kinase and ERK pathways downstream of beta2-AR and ROS, is a prerequisite for CRE-dependent transcription. Transient hypoxia may contribute to cardiac hypertrophy in ischemic heart disease independent of cardiac workload.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据