4.7 Article

Hamiltonian discretization of boundary control systems

期刊

AUTOMATICA
卷 40, 期 5, 页码 757-771

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.automatica.2003.12.017

关键词

boundary control; spatial discretization; finite elements; port-Hamiltonian systems

向作者/读者索取更多资源

A fundamental problem in the simulation and control of complex physical systems containing distributed-parameter components concerns finite-dimensional approximation. Numerical methods for partial differential equations (PDEs) usually assume the boundary conditions to be given, while more often than not the interaction of the distributed-parameter components with the other components takes place precisely via the boundary. On the other hand, finite-dimensional approximation methods for infinite-dimensional input-output systems (e.g., in semi-group format) are not easily relatable to numerical techniques for solving PDEs, and are mainly confined to linear PDEs. In this paper we take a new view on this problem by proposing a method for spatial discretization of boundary control systems based on a particular type of mixed finite elements, resulting in a finite-dimensional input-output system. The approach is based on formulating the distributed-parameter component as an infinite-dimensional port-Hamiltonian system, and exploiting the geometric structure of this representation for the choice of appropriate mixed finite elements. The spatially discretized system is again a port-Hamiltonian system, which can be treated as an approximating lumped-parameter physical system of the same type. In the current paper this program is carried out for the case of an ideal transmission line described by the telegrapher's equations, and for the two-dimensional wave equation. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据