4.7 Article

How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility?

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 234, 期 1-2, 页码 41-49

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2004.01.020

关键词

polysulfone; polyvinylpyrrolidone; dialysis membrane; atomic force microscopy; biocompatibility

向作者/读者索取更多资源

Polysulfone (PS) dialysis membranes hydrophilized by blending poly vinylpyrrolidone (PVP) are well known to have excellent biocompatibility in clinical use. The objective of the present study is thus to clarify how PVP improves biocompatibility of PS membranes and furthermore to develop a patient-friendly PS dialysis membrane with higher biocompatibility. Biocompatibility based on both lactate dehydrogenase (LDH) activity and amount of protein adsorption was greatly different among four commercially available PS hollow-fiber dialysis membranes. PVP present on the inner surface of the hollow fiber was quantitatively determined by X-ray photoelectron spectroscopy (XPS), demonstrating the amount of PVP to be varying for each membrane. Structure parameters such as surface roughness, three-dimensional surface area and polymer particle diameter, indications of the physicochemical properties of the membranes, were measured on the observed inner surface images in both wet and dry conditions by atomic force microscopy (AFM) to account for dependence of biocompatibility on these structure parameters. The higher regularity polymer particle structure has in the wet condition, the lower wet/dry ratio surface roughness has and the larger wet/dry ratio polymer particle diameter has, that is, the more greatly the polymer particles swell by wetting, the higher biocompatibility is achieved by cushion effect. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据