4.5 Article

Escape behavior and escape circuit activation in juvenile crayfish during prey-predator interactions

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 207, 期 11, 页码 1855-1863

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.00992

关键词

crayfish; Procambarus clarkii; dragonfly nymph; Anax junius; predator; prey; escape

类别

资金

  1. NINDS NIH HHS [R01-NS26457] Funding Source: Medline

向作者/读者索取更多资源

The neural systems that control escape behavior have been studied intensively in several animals, including mollusks, fish and crayfish. Surprisingly little is known, however, about the activation and the utilization of escape circuits during prey-predator interactions. To complement the physiological and anatomical studies with a necessary behavioral equivalent, we investigated encounters between juvenile crayfish and large dragonfly nymphs in freely behaving animals using a combination of high-speed video-recordings and measurements of electric field potentials. During attacks, dragonfly nymphs rapidly extended their labium, equipped with short, sharp palps, to capture small crayfish. Crayfish responded to the tactile stimulus by activating neural escape circuits to generate tail-flips directed away from the predator. Tail-flips were the sole defense mechanism in response to an attack and every single strike was answered by tail-flip escape behavior. Crayfish used all three known types of escape tail-flips during the interactions with the dragonfly nymphs. Tail-flips generated by activity in the giant neurons were predominantly observed to trigger the initial escape responses to an attack, but non-giant mediated tail-flips were often generated to attempt escape after capture. Attacks to the front of the crayfish triggered tail-flips mediated either by the medial giant neuron or by non-giant circuitry, whereas attacks to the rear always elicited tail-flips mediated by the lateral giant neuron. Overall, tail flipping was found to be a successful behavior in preventing predation, and only a small percentage of crayfish were killed and consumed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据