4.7 Article

Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: Toxic effects and environmental feedback

期刊

AQUATIC TOXICOLOGY
卷 204, 期 -, 页码 19-26

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aquatox.2018.08.010

关键词

Algal organic matter; Microcystis aeruginosa; Zinc oxide nanoparticles; Environmental risk

资金

  1. Natural Science Foundation of China [21776224]
  2. National Major Science and Technology Project of China [2015ZX07406-001]

向作者/读者索取更多资源

The vast majority of studies measure the toxic effect of organisms exposed to nanoparticles (NPs) while there is still a lack of knowledge about the influence of NPs on the aquatic environment. It is unknown whether or not the interaction between NPs and algae will result in the variation of algal organic matter (AOM) and stimulate the production of more algal toxins. In this study, zinc oxide nanoparticles (nano-ZnO) as a typical representative of metal oxide NPs were used to evaluate the toxic effects and environmental feedback of Microcystis aeruginosa. Reactive oxygen species (ROS) and malondialdehyde (MDA) were measured to explain the toxicity mechanism. Changes of AOM, including the production of toxins, the molecular weight distribution and the excitation emission matrices of algal solution were also studied as environmental feedback indicators after nano-ZnO destroyed the algae. As the nano-ZnO exceeded the comparable critical concentration (1.0 mg/L), the algae were destroyed and intracellular organic matters were released into the aquatic environment, which stimulated the generation of microcystin-LR (MC-LR). However, it is worth noting that the concentration of nano-ZnO would need to be high (at mg/L range) to stimulate more MC-LR production. These findings are expected to be beneficial in interpreting the toxicity and risks of the releasing of NPs through the feedback between algae and the aquatic environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据