4.7 Article

Mono-substituted isopropylated triaryl phosphate, a major component of Firemaster 550, is an AHR agonist that exhibits AHR-independent cardiotoxicity in zebrafish

期刊

AQUATIC TOXICOLOGY
卷 154, 期 -, 页码 71-79

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aquatox.2014.05.007

关键词

Aryl hydrocarbon receptor (AHR); Cardiotoxicity; Firemaster 550; Flame retardant; Zebrafish; CH223191

资金

  1. NIEHS [P30 ES000210, P42 ES016465]
  2. Undergraduate Research, Innovation, Scholarship & Creativity (URISC) program at Oregon State University

向作者/读者索取更多资源

Firemaster 550 (FM550) is an additive flame retardant mixture used within polyurethane foam and is increasingly found in house dust and the environment due to leaching. Despite the widespread use of FM550, very few studies have investigated the potential toxicity of its ingredients during early vertebrate development. In the current study, we sought to specifically investigate mono-substituted isopropylated triaryl phosphate (mITP), a component comprising approximately 32% of FM550, which has been shown to cause cardiotoxicity during zebrafish embryogenesis. Previous research showed that developmental defects are rescued using an aryl hydrocarbon receptor (AHR) antagonist (CH223191), suggesting that mITP-induced toxicity was AHR-dependent. As zebrafish have three known AHR isoforms, we used a functional AHR2 knockout line along with AHR1A- and AHR1B-specific morpholinos to determine which AHR isoform, if any, mediates mITP-induced cardiotoxicity. As in silico structural homology modeling predicted that mITP may bind favorably to both AHR2 and AHR1B isoforms, we evaluated AHR involvement in vivo by measuring CYP1A mRNA and protein expression following exposure to mITP in the presence or absence of CH223191 or AHR-specific morpholinos. Based on these studies, we found that mITP interacts with both AHR2 and AHR1B isoforms to induce CYP1A expression. However, while CH223191 blocked mITP-induced CYP1A induction and cardiotoxicity, knockdown of all three AHR isoforms failed to block mITP-induced cardiotoxicity in the absence of detectable CYP1A induction. Overall, these results suggest that, while mITP is an AHR agonist, mITP causes AHR-independent cardiotoxicity through a pathway that is also antagonized by CH223191. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据