4.5 Article

Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen

期刊

BREAST CANCER RESEARCH AND TREATMENT
卷 85, 期 2, 页码 151-159

出版社

KLUWER ACADEMIC PUBL
DOI: 10.1023/B:BREA.0000025406.31193.e8

关键词

endoxifen; estrogen receptor; gene expression; metabolite; proliferation; receptor binding; tamoxifen

类别

资金

  1. NCI NIH HHS [P30-CA51008] Funding Source: Medline
  2. NIGMS NIH HHS [U-01 GM61373] Funding Source: Medline

向作者/读者索取更多资源

The antiestrogen tamoxifen is extensively metabolized in patients to form a series of compounds with altered affinity for estrogen receptors (ERs), the primary target of this drug. Furthermore, these metabolites exhibit a range of partial agonist and antagonist activities for ER mediated effects that do not depend directly on their absolute affinity for ERs. Thus, clinical response to tamoxifen therapy is likely to depend on the aggregate effect of these different metabolites resulting from their abundance in the patient, their affinity for the receptors, and their agonist/antagonist profile. A recent study has shown that plasma concentrations of the tamoxifen metabolite 4-hydroxy-N-desmethyl tamoxifen (endoxifen), in patents undergoing tamoxifen therapy, are dependent on the cytochrome P450 (CYP) 206 genotype of the patient and that medications commonly prescribed to patients on tamoxifen therapy can also inhibit endoxifen production. In this study we characterized the properties of this metabolite with respect to binding to ERs, ability to inhibit estrogen stimulated breast cancer cell proliferation and the regulation of estrogen responsive genes. We demonstrate that endoxifen has essentially equivalent activity to the potent metabolite 4-hydroxy tamoxifen (4-OH-tam) often described as the active metabolite of this drug. Since plasma levels of endoxifen in patients with functional CYP2D6 frequently exceed the levels of 4-OH-tam, it seems likely that endoxifen is at least as important as 4-OH-tam to the overall activity of this drug and suggests that CYP2D6 status and concomitant administration of drugs that inhibit CYP2D6 activity have the potential to affect response to tamoxifen therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据