4.7 Article

Molecular model for astringency produced by polyphenol/protein interactions

期刊

BIOMACROMOLECULES
卷 5, 期 3, 页码 942-949

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm0345110

关键词

-

向作者/读者索取更多资源

Polyphenols are responsible for the astringency of many beverages and foods. This is thought to be caused by the interaction of polyphenols with basic salivary proline-rich proteins (PRPs). It is widely assumed that the molecular origin of astringency is the precipitation of PRPs following polyphenol binding and the consequent change to the mucous layer in the mouth. Here, we use a variety of biophysical techniques on a simple model system, the binding of beta-casein to epigallocatechin gallate (EGCG). We show that at low EGCG ratios, small soluble polydisperse particles are formed, which agaregate to form larger particles as EGCG is added. There is an initial compaction of the protein as it binds to the polyphenol, but the particle subsequently increases in size as EGCG is added because of the incorporation of EGCG and then to aggregation and precipitation. These results are shown to be compatible with what is known of astringency in foodstuffs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据