4.6 Article

Resonance approximation and charge loading and unloading in adiabatic quantum pumping

期刊

PHYSICAL REVIEW B
卷 69, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.195301

关键词

-

向作者/读者索取更多资源

Quantum pumping through mesoscopic quantum dots is known to be enhanced by resonant transmission. The pumped charge is close to an integer number of electrons when the pumping contour surrounds a resonance, but the transmission remains small on the contour. For noninteracting electrons, we give a quantitative account of the detailed exchange of electrons between the dot and the leads (to the electron reservoirs) during a pumping cycle. Near isolated distinct resonances, we use approximate Breit-Wigner expressions for the dot's Green function to discuss the loading/unloading picture of the pumping: the fractional charge exchanged between the dot and each lead through a single resonance point is related to the relative couplings of the dot and the leads at this resonance. If each resonance point along the pumping contour is dominated by the coupling to a single lead (which also implies a very small transmission), then the crossing of each such resonance results in a single electron exchange between the dot and that lead, ending up with a net quantized charge. When the resonance approximation is valid, the fractional charges can also be extracted from the peaks of the transmissions between the various leads.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据