4.6 Article

A phase-field approach to the simulation of the excimer laser annealing process in Si

期刊

JOURNAL OF APPLIED PHYSICS
卷 95, 期 9, 页码 4806-4814

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1690861

关键词

-

向作者/读者索取更多资源

We present a phase-field methodology applied to the simulation of dopant redistribution in Si during an excimer laser annealing process. The kinetic model derived in the framework of the Ginsburg-Landau thermodynamic formalism is made up of three coupled equations that rule the concurrent evolution of the thermal, phase, and impurity fields. The model was solved numerically by considering, as the initial conditions, the generic material modification due to an ion implant process, i.e., the implanted impurity profile in a SiO2/a-Si/c-Si stack. The model is parametrized for the cases of As and B doping, considering the thermal properties of the materials in the stack and the impurity-dependent diffusivity in the solid, liquid, and interfacial regions (the latter is characterized by a finite dimension). Simulated profiles are compared with the experimental results that have been obtained by secondary ion mass spectrometry and spreading resistance profiling. These comparisons demonstrate the reliability of the theoretical methodology. The model features are discussed in detail, especially with a view to the extension of the method to other impurity atoms and to the two-dimensional case. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据