4.7 Article

Resistance to tyrosine kinase inhibition by mutant epidermal growth factor receptor variant III contributes to the neoplastic phenotype of glioblastoma multiforme

期刊

CLINICAL CANCER RESEARCH
卷 10, 期 9, 页码 3216-3224

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-03-0521

关键词

-

类别

资金

  1. NCI NIH HHS [1T32-CA-74736] Funding Source: Medline

向作者/读者索取更多资源

Purpose: We have reported previously that tumors expressing wild-type epidermal growth factor receptor (EGFR) in a murine model are sensitive to the EGFR tyrosine kinase inhibitor gefitinib, whereas tumors expressing mutant EGFR variant III (EGFRvIH) are resistant. Determination of how this differential inhibition occurs may be important to patient selection and treatment criteria, as well as the design of future therapeutics for glioblastoma multiforme. Experimental Design: We have determined and quantifled how treatment with geritinib at commonly used, noncytotoxic doses affects neoplastic functions ascribed to EGFRvIII, including downstream signaling by Akt, DNA synthesis, and cellular invasion. In doing so, we have tested and compared a series of wild-type and mutant EGFRvIII-expressing fibroblast and glioblastoma cell lines in vitro after treatment with gefitinib. Results: The results of these experiments demonstrate that short-term treatment with geritinib (similar to24 h) does not reduce phosphorylation of EGFRvIII, whereas EGFR phosphorylation is inhibited in a dose-dependent manner. However, after daily treatment with gefitinib, phosphorylation declines for EGFRvIII by day 3 and later. Nevertheless, after 7 days of daily treatment, cells that express and are dependent on EGFRvIII for tumorigenic growth are not effectively growth inhibited. This may be due in part to phosphorylation of Akt, which is inhibited in EGFR-expressing cells after treatment with gefitinib, but is unaffected in cells expressing EGFRvIII. Cell cycle analysis shows that nascent DNA synthesis in EGFR-expressing cells is inhibited in a dose-dependent manner by gefitinib, yet is unaffected in EGFRvIII-expressing cells with increasing dosage. Furthermore, cells expressing EGFRvIII demonstrate greater invasive capability with increasing gefitinib concentration when compared with cells expressing EGFR after treatment. Conclusions: We conclude that the neoplastic phenotype of EGFRvIII is relatively resistant to gefitinib and requires higher doses, repeated dosing, and longer exposure to decrease receptor phosphorylation. However, this decrease does not effectively inhibit the biologically relevant processes of DNA synthesis, cellular growth, and invasion in cells expressing EGFRvIII.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据