4.5 Review

Machining process monitoring and control: The state-of-the-art

出版社

ASME
DOI: 10.1115/1.1707035

关键词

-

向作者/读者索取更多资源

Research in automating the process level of machining operations has been conducted, in both academia and industry, over the past few decades. This work is motivated by a strong belief that research in this area will provide increased productivity, improved part quality, reduced costs, and relaxed machine design constraints. The basis for this belief is twofold. First, machining process automation can be applied to both large batch production environments and small batch jobs. Second, process automation can autonomously tune machine parameters (feed, speed, depth of cut, etc.) on-line and off-line to substantially increase the machine tool's performance in, terms of part tolerances and surface finish, operation cycle time, etc. Process automation holds the promise of bridging the gap between product design and process planning, while reaching beyond the capability of a human operator. The success of manufacturing process automation hinges primarily on the effectiveness of the process monitoring and control systems. This paper discusses the evolution of machining process monitoring and control technologies and conducts an in-depth review of the state-of-the-art of these technologies over the past decade. The research in each area is highlighted with experimental and simulation examples. Open architecture software platforms that provide the means to implement process monitoring and control systems are also reviewed. The impact, industrial realization, and future trends of machining process monitoring and control technologies are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据