4.4 Article Proceedings Paper

Characterization of pedestal parameters and edge localized mode energy losses in the Joint European Torus and predictions for the International Thermonuclear Experimental Reactor

期刊

PHYSICS OF PLASMAS
卷 11, 期 5, 页码 2668-2678

出版社

AIP Publishing
DOI: 10.1063/1.1707025

关键词

-

向作者/读者索取更多资源

This paper presents the experimental characterization of pedestal parameters, edge localized mode (ELM) energy, and particle losses from the main plasma and the corresponding ELM energy fluxes on plasma facing components for a series of dedicated experiments in the Joint European Torus (JET). From these experiments, it is demonstrated that the simple hypothesis relating the peeling-ballooning linear instability to ELM energy losses is not valid. Contrary to previous observations at lower triangularities, small energy losses at low collisionality have been obtained in regimes at high plasma triangularity and q(95)similar to4.5, indicating that the edge plasma magnetohydrodynamic stability is linked with the transport mechanisms that lead to the loss of energy by conduction during type I ELMs. Measurements of the ELM energy fluxes on the divertor target show that their time scale is linked to the ion transport along the field and the formation of a high energy sheath, in agreement with kinetic modeling of ELMs. Higher density ELMs, of a convective nature, lead to overall much longer time scales for the ELM energy flux, with more than 80% of the ELM energy flux arriving after the surface divertor temperature has reached its maximum value. On the contrary, for low density ELMs, of a conductive nature, up to 40% of the energy flux arrives at the divertor target before the surface divertor temperature has reached its maximum value. These large and more conductive ELMs may lead to up to similar to50% of the ELM energy reaching the main wall plasma facing components instead of the divertor target. The extrapolation to the International Thermonuclear Experimental Reactor of the obtained results is described and the main uncertainties discussed. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据