4.7 Article

Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis)

期刊

AQUATIC TOXICOLOGY
卷 96, 期 2, 页码 159-165

出版社

ELSEVIER
DOI: 10.1016/j.aquatox.2009.10.019

关键词

Perca fluviatilis; Silver nanoparticle; Silver nitrate; Critical oxygen tension; Basal metabolic rate; Respiration

资金

  1. Danish Strategic Research Council [216-06-0015]

向作者/读者索取更多资源

Silver nanoparticles are utilised in an increasing amount of products, and discharge to the aquatic environment is inevitable. Fish gills are in direct contact with the ambient water, making them potential exposed and vulnerable to suspended silver nanoparticles. The present study investigates the effect of silver nanoparticles (average 81 nm) on the oxygen consumption (M-O2) in Eurasian perch (Perca fluviatilis), expressed by the basal metabolic rate (BMR) and the critical oxygen tension (P-crit) below which the fish can no longer maintain aerobic metabolism. For comparison, the impact of silver nitrate (AgNO3), was examined as well. Perch were exposed to nominal concentrations of 63, 129 and 300 mu g L-1 silver nanoparticles and 39 and 386 mu g L-1 AgNO3, respectively, plus controls which were not exposed to silver. M-O2 measured by automated intermittent closed respirometry. After one day acclimatization in the respirometer, the pre-exposure BMR was determined together with Pit. Hereafter, nanoparticles or silver nitrate were added to the test tank and BMR and Pit were measured again the following day. The results demonstrate that nanosilver had no impact on the BMR, whereas exposure to 386 mu g L-1 AgNO3 resulted in a significant raise in BMR. Pit was increased approximately 50% after exposure to 300 mu g L-1 nanosilver plus 31% and 48% by 39 mu g L-1 and 386 mu g L-1 silver nitrate, respectively. These findings reveal that exposure to nanosilver results in impairment of the tolerance to hypoxia. Possibly, nanosilver affects the gills externally, reducing the diffusion conductance which then leads to internal hypoxia during low water oxygen tensions (P-O2). (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据